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Abstract

In this thesis we construct a composite indicator for the financial cycle in the spirit
of Schüler et al. (2015). The analysis relies on selecting most relevant co-movement
in several key macro-financial variables using spectral methods. To this end, a
detailed description of the needed frequency-domain theory is presented. We show
that the obtained financial cycle proxy makes a useful addition to the
macroprudential toolkit as it succeeds well in early identification of financial stress.



Acknowledgements

I was fortunate enough to receive a lot of support during my struggles to complete this
thesis. First and foremost I want to thank Bank of Finland for the opportunity to write my
thesis while working in the Macroprudential Analysis Division. I thank my boss Paavo
Miettinen for allowing me to conduct independent research. I would also like to express
my gratitude to my colleagues for their assistance, especially to Eero Tölö who was always
ready to discuss questions on theory and technical implementation. Furthermore, I want to
thank my mother Sari, father Esa, and brother Kalle for their love and support throughout
the years. A special thanks to Sari Nissinen for believing in me and putting up with my
quirks. And last but not least, I want to thank a very special group of people who I suffered
with during the hardest times of our graduate studies. Without you I never would have
graduated.



Contents

Glossary 5

List of Symbols 6

List of Figures 7

List of Tables 8

1 Introduction 9
1.1 Motivation for financial cycles . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Practicalities regarding the thesis . . . . . . . . . . . . . . . . . . . . . . 10

2 Theory of Spectral Analysis 12
2.1 Motivation for frequency-domain analysis . . . . . . . . . . . . . . . . . 12
2.2 Fourier analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Fourier transform and Parseval’s relation . . . . . . . . . . . . . 14
2.2.2 Family portrait of discrete-time Fourier transforms . . . . . . . . 18

2.3 Spectral analysis of stationary processes . . . . . . . . . . . . . . . . . . 22
2.3.1 Univariate spectrum . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Cross-spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Estimation of spectral densities . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Univariate natural estimators . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Consistent estimation of univariate spectrum . . . . . . . . . . . 27
2.4.3 Multivariate estimators . . . . . . . . . . . . . . . . . . . . . . . 30

3 Constructing Composite Financial Cycle 32
3.1 Selecting relevant variables . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Stress index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Pre-multiplying variables . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Normalizing variables . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Aggregation of variables . . . . . . . . . . . . . . . . . . . . . . 38



CONTENTS

3.3 Power Cohesion and endogenous frequency band . . . . . . . . . . . . . 39
3.4 Filtering the stress index . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Empirical Results 43
4.1 Visualization of Composite Financial Cycles . . . . . . . . . . . . . . . . 43
4.2 Early warning properties . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Pooled logit early warning regression . . . . . . . . . . . . . . . 47
4.2.2 Comparison of CFC and Financial Stress Index for Finland . . . . 52

4.3 Comparing results with Schüler et al. (2015) . . . . . . . . . . . . . . . . 54

5 Conclusion 56

Appendix A 57
A.1 Circular shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.2 Raw series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.3 Defalting nominal raw series . . . . . . . . . . . . . . . . . . . . . . . . 58
A.4 De-trending series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.5 Random Walk filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.6 Matlab code for Blacmman-Tukey spectral density estimator . . . . . . . 65
A.7 Power Cohesions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.8 Crisis Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4



Glossary

Bond yield Short-hand for government benchmark 10-year bond yield.

CFC Composite Financial Cycle.

Credit Short-hand for credit to private sector.

DFT Discrete Fourier Transform.

DTFT Discrete Time Fourier Transform. See also FFT.

ECDF Empirical Cumulative Distribution Function.

EWMA Exponentially Weighted Moving Average.

FFT Finite Fourier Transform.

Financial cycle
variables

Group of variables used to construct CFC.

FSI Financial Stress Index as in Huotari (2015).

House prices Short-hand for residential property prices.

PCoh Power Cohesion, metric introduced in Schüler et al. (2015).

Raw series Variable time series before any transformations.

Signal In this thesis, a finite sample extracted from a time series.

Stocks Short-hand for stock market index.
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Motivation for financial cycles

Chapter 1

Introduction

1.1 Motivation for financial cycles

The study of business cycles is in the core of macroeconomic research. This comes as no
big surprise as the so called boom-and-bust cycles are important for the functionality of
economies. Further, cyclical nature of economy is an interesting academic topic by its own
right. Contrary to its well-know cousin, financial cycle is a less familiar phenomenon.
This might seem surprising as the study of financial cycles actually pre-dates that of
business cycles (Borio, 2014, p. 182). However, financial cycles fell out of favour during
the post-war period, not the least due to paradigms such as the Modgliani-Miller theorem
and real business-cycle theory, which emphasized the real side side of the economy over
nominal quantities. It wasn’t until the financial crisis of 2007-2008 that sparked interest in
financial cycles again. At this point it became clear that academics and policy makers alike
had overlooked the interconnectedness of financial markets and real side of the economy,
which led to hard felt – and in particular, real – consequences.

What are financial cycles then? Unfortunately, there exists no commonly agreed upon
definition. However, most often the term "financial cycle" refers to a notion capturing
the extent of imbalances in macro-financial sector. One often quoted definition is due to
Borio (2014), according towhomfinancial cycles can be thought to reflect "self-reinforcing
interactions between perceptions of value and risk, attitudes towards risk and financing
constraints, which translate into booms followed by busts." This definition encompasses
the analytical properties of a financial cycle but is as such hard to grasp in practical terms.
In practice, a common approach is to scrutinize cyclical properties of a set of key macro-
financial variables. The essential question is thus which variables should one include in
the analysis.

Perhaps the most used variable in research revolving around financial cyclicalities
is credit. Indeed, works by Aikman et al. (2015), Schularick and Taylor (2012), and
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Practicalities regarding the thesis

Geanakolpos (2010) have stressed the role of credit in determining swings in financial
conditions and asset prices. This view has not gone unnoticed in policy work either, as
the credit-to-GDP gap is firmly baked into the influential Basel accords. A closely related
stance is to look at the co-movement of credit and housing prices. This is exactly the
approach adopted in Drehmann et al. (2012) who find that credit and housing prices exhibit
important common medium-term fluctuations. Furthermore, authors find that peaks in the
swings of these variables are closely associated with onsets of financial/banking crises.
Claessens et al. (2011) provide further insight that cycles in credit and housing prices tend
to be long and severe.

In addition to credit and housing prices, also equity and other asset prices have been
considered as additional building blocks of financial cycles. The results are mixed.
Drehmann et al. (2012) find equity prices to be less important by claiming that they don’t
exhibit considerable medium-term co-movement with credit and housing prices. This
stance has been recently challenged by Schüler et al. (2015) who argue that stock prices
do share relevant co-movement with credit and housing prices, but bond yields less so.

Summarizing the above discussion, financial cycles exhibit following stylized facts:

1. In its most parsimonious form, financial cycles can be thought of as changes in credit
and property prices. Relevancy of asset prices is less clear.

2. Financial cycles have generally rather long periods, exceeding those of business
cycles.

3. Peaks in financial cycles are associated with financial crises.

From these stylized facts we can deduce that it is worthwhile to know the current phase
of the financial cycle for two reasons in particular. First, understanding cyclicalities
exceeding those of usual business cycle fluctuations would offer a more robust view on
current economic developments. Second, it may offer an approach for early detection of
costly financial crises, which is of great interest to many parties, not the least to market
regulators.

1.2 Practicalities regarding the thesis

The motivation for this thesis arose from a practical vein. At the time of writing I was
working at the Macroprudential Analysis Division of Bank of Finland, and my department
was interested in a tool with which one could proxy the current phase of the financial
cycle. In this thesis we will go trough a detailed construction of a proxy for the financial
cycle, which we call the Composite Financial Cycle, or CFC for short. The methodology
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Practicalities regarding the thesis

follows that of a research piece Characterising the financial cycle: a multivariate and
time-varying approach by Yves Schüler, Paul Hiebert, and Tuomas Peltonen (Schüler
et al., 2015). The CFC sums information from several key macro-financial variables in a
multivariate fashion. Further, it is by construction a parsimonious measure that includes
only the most relevant co-movement in selected variables.

The thesis is empirical in nature. This means that proofs and technical details are
mostly left out. In return we build more on intuition when presenting theory and results.
In the theoretical part of the thesis we use two types of elements to present the most
important concepts:

• Results are important theorems/outcomes/results introduced in source texts. They
are not formally proven, but the underlying reasoning is presented in the narrative
leading to them. Reader is pointed to the corresponding pages in reference text.

• Definitions summarize important concept definitions. Often they are modified
slightly to match the notation and conventions used in this thesis. As with Results,
reader is pointed to the corresponding pages in reference text.

The contributions ofmy thesis are a) double-checking key results presented in Schüler et al.
(2015), b) a more thorough treatment of the technical issues behind the construction of the
CFC than in the original paper, c) a more detailed empirical examination for Finland how
well the CFC can predict periods of financial stress, and finally d) providing a ready-made
tool to be used in further policy analysis at Bank of Finland.

The rest of the thesis is organized as follows. In Chapter 2 we introduce theory of
spectral analysis essential for the construction of the CFC. Chapter 3 treats the construction
of the CFC. In Chapter 4 we present our empirical findings for the phase of the CFC as
well as its early warning properties. Finally, Chapter 5 concludes.
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Motivation for frequency-domain analysis

Chapter 2

Theory of Spectral Analysis

This chapter covers the needed theoretical aspects for constructing our proxy of the
financial cycle. First, we motivate the need for frequency-domain analysis. Second, reader
is introduced to the single-most important tool in frequency-domain analysis, namely the
Fourier transform. Third, the link between Fourier transform and spectral analysis is built.
Lastly, we discuss estimation of power spectral density. The exposition in this chapter
relies mostly on the excellent book series Spectral Analysis and Time Series by M.B.
Priestley (Priestley, 1981a and Priestley, 1981b), but also on a slightly more practical
oriented book by Stoica and Moses (2004) as well as some online references.

2.1 Motivation for frequency-domain analysis

Practitioners of economics are well familiar with econometric analysis taking place in
time-domain. In contrast, analysis in frequency-domain has been left to less attention. In
fields such as physics and engineering frequency-domain analysis is often the predominant
way to characterize properties of a time series. This is due to the fact that tackling a given
problem in frequency-domain often lends itself to mathematical convenience, but also due
to its ability to offer a different perspective to the problem. Time-domain and frequency-
domain analyses can be seen as two sides of the same coin. Both provide insights into
properties and dynamics of a time series, but whereas time-domain analysis focuses on
how a time series evolves over time, frequency-domain analysis inspects over which range
of frequencies (or equivalently, over which range of periods) the time series operates.

For an intuitive example how a different perspective can be useful, consider a pulse of
light that travels through substance. In time-domain we could measure the propagation
of the waveform over time. Although this might be what we are interested in, it does not
explain too much about the characteristics of the pulse. Imagine now that we let the pulse
run through a prism, which breaks it into a spectrum of pulses, each operating at certain
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Fourier analysis

frequency (or equivalently, at certain wave length) and thus having a distinct colour. The
prism effectively acts as a link between time and frequency domains, revealing all the
colors that were "hidden" within the original light pulse. Indeed, it was the change of
perspective to frequency-domain that revealed patterns not detectable when inspecting the
pulse through time-domain analysis.

Applications of frequency-domain analysis are vast. For example, in signal processing
it can be used in creating earmuffs that filter out sounds operating at certain frequencies.
In medicine frequency-domain analysis allows the tools for pacemakers. Seismologist
might use frequency-domain analysis to detect build-ups of high-frequency quakes. It
turns out that frequency domain analysis can be a useful tool for economics and finance,
too. An Economist might be interested in developments of certain economic variables.
As most series are inherently noisy, a possible way to approach could be first to inspect the
frequency-domain side of the coin, infer at which frequencies the most important drivers
of variables lie, and then filter out the less relevant frequencies from the time series. This
potentially allows to draw more coherent conclusions about the state of the economy.

2.2 Fourier analysis

In this section we start building the needed toolbox by introducing basic concepts of
Fourier analysis, which construct the backbone of frequency-domain analysis. The basic
idea is simple but all the more remarkable: under certain conditions we can decompose
any function (or process) into a sum of sinusoids, i.e. sine and cosine functions. The
rigorous formulation of this amazing result wasn’t straightforward. As the name suggests,
the invention of Fourier analysis has been credited to French mathematician Jean-Baptiste
Joseph Fourier, who in year 1807 introduced the so-called Fourier series in a manuscript
dealing with propagation of heat (Dominguez, 2016).

Strictly speaking, Fourier was not the first one to use Fourier series. Similar con-
structions were known to other great mathematician, such as Lagrange and Euler, prior to
Fourier’s work. However, Fourier was the first one to use Fourier series to model arbitrary
functions. Fourier’s initial work was criticized for lacking mathematical rigour and it only
dealt with series of known periodicity. The refinement of the Fourier analysis took many
more years and also involved other great mathematicians of the time.
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Fourier analysis

2.2.1 Fourier transform and Parseval’s relation

We will start by formally introducing Fourier series:

Result 2.2.1 Fourier series
Priestley (1981a, p. 186-189)

Let X(t) be a real-valued, deterministic, and absolutely integrable function with period
2π, i.e. X(t) = X(t + 2n) , n = ±1, ±2, . . . , fulfilling some regularity conditions.1 Then ∀t

we have

X(t) = 1

2
a0 +

∞∑
n=1

(an cos(nt) + bn sin(bt)) , (2.1)

where the right-hand side is called a Fourier series, and an and bn are called Fourier
coefficients which are given by

an =
1

π

∫ π

−π
X(t)cos(nt)dt (2.2)

bn =
1

π

∫ π

−π
X(t)sin(nt)dt (2.3)

for n = 0, 1, 2, . . . .

Fourier’s initial work was criticized about not formally showing that the right-hand-side
of (2.1) actually converges to function X(t) (Cajori, 1894, p. 283).2 Furthermore, it is not
possible to apply Fourier series decomposition to non-periodic functions. In order to deal
with non-periodic functions one needs an extension to the idea of Fourier series which
had still been unknown to Fourier in year 1807. This extension goes by the name Fourier
integrals. Intuitively, non-periodic functions can be thought as functions with infinite
period. Using this reasoning we "might attempt to approximate a non-periodic function
by a sequence of periodic functions with longer and longer periods" (Priestley, 1981a, p.
4). It turns out that – again under the same contingencies of absolute integrability and
certain regularity conditions as in Result 2.2.1 – we can formalize the concept of Fourier
integrals as follows.

1See Priestley (1981a, p. 188-189) for the regularity conditions. The assumed period length 2π comes
without loss of generality as the result is easily extended to period lengths other than 2π by a simple time
scale transformation (Priestley, 1981a, p. 194).

2As Priestley (1981a, p. 187-188) points out, a direct proof of existence of (2.1) is extremely difficult.
The usual way to come up with this expression is to define sequences {an} and {bn} as given in equations
(2.2) - (2.3). Then it can be shown that, under the assumptions given in Result 2.2.1, the right-hand side
does indeed converge to X(t).
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Fourier analysis

Result 2.2.2 Fourier integrals
Priestley (1981a, p. 199-201)

Let X(t) be a real valued, deterministic, and absolutely integrable non-periodic func-
tion fulfilling same regularity conditions as in Result 2.2.1. Then ∀t X(t) can expressed
as an integral of complex exponential:

X(t) =
∫ ∞

−∞
p( f )e2πi f t df (2.4)

where

p( f ) =
∫ ∞

−∞
X(t)e−2πi f t dt (2.5)

Equation (2.5) is usually referred to as the Fourier transform of X(t), and (2.4) is called
the Fourier integral representation of function X(t) or simply inverse Fourier transform.
Together the two equations are known as a Fourier pair. It is worth noting that the only real
difference between Fourier series and Fourier integral is that whereas a periodic function
can be expressed as a sum of sinusoids over a discrete set of frequencies, a non-periodic
function can only be expressed over a continuous frequency interval (Priestley, 1981a,
p. 6).3 Result 2.2.2 could be generalized to treat also complex-valued function X(t).
However, as our analysis will focus solely on economic time series, the real-valued case
is enough for our needs.

So far we have treated functions X(t) and p( f ) as purely mathematical objects. There
is, however, a very straightforward and natural way to attach physical meaning to the
Fourier pair. X(t) can be understood as (at this point still deterministic) process evolving
over time, so that t represent an arbitrary point in time. On the other hand, f can be
thought to represent frequency, that is, cycles per unit time. Then the two equations in
Fourier pair (2.4) - (2.5) constitute a mapping between time and frequency domains.

Often in literature "ordinary" frequency f is replaced by "angular" frequency ω,
indicating angular displacement per unit time. In this case the Fourier pair can be defined
to have the form (Priestley, 1981a, p. 201)

3There actually exists a common Fourier representation for both periodic or non-periodic functions X(t)
using the so-called Fourier-Stieltjes integral

X(t) =
∫ ∞

−∞
ei2π f t dP(ω) ,

where P(ω) is a possibly complex valued function, called the Fourier-Stieltjes transform of X(t), whose
form can be determined from X(t) (Priestley, 1981a, p. 6). As the approach of this thesis is more empirical
than theoretical, we will not concern ourselves with this more general representation.
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Fourier analysis

X(t) = 1
√

2π

∫ ∞

−∞
G( f )eiωt dω (2.6)

G(ω) = 1
√

2π

∫ ∞

−∞
X(t)e−iωt dt (2.7)

Comparing (2.6) - (2.7) to (2.4) - (2.5), we notice that changing from ordinary frequency
f to angular frequency ω introduces a scaling term 1√

2π
in both Fourier pair equations.

However, this a matter of convention; it would also be valid to define the Fourier pair as
(WolframMathWorld, 2017)

X(t) =
∫ ∞

−∞
G( f )eiωt dω

G(ω) = 1

2π

∫ ∞

−∞
X(t)e−iωt dt

or

X(t) = 1

2π

∫ ∞

−∞
G( f )eiωt dω

G(ω) =
∫ ∞

−∞
X(t)e−iωt dt

In these cases, however, the symmetry between the Fourier transform and its inverse is
broken, due to which definition (2.6)-(2.7) is sometimes preferred.

At this point we are still uninformed what G(ω) actually portrays, and further, what
is achieved with the mapping between time and frequency domains. To answer these
questions, we define two important concepts: energy and power of X(t).

Definition 2.2.1 Energy and power
Priestley (1981a, p. 195, 204)

Let X(t) be a deterministic (either periodic or non-periodic) function. Then its energy
over the interval [−T,T], denoted as E(−T,T), is defined as

E(−T,T) =

∫ T

−T
X2(t)dt (2.8)

In turn, power, denoted by P(−T,T), is defined as energy over unit time:

P(−T,T) =
E(−T,T)

2T
(2.9)
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Fourier analysis

Energy is a very common concept e.g. in electrical engineering, where we could want
to capture the amount of energy dissipated when current runs through a circuit with unit
resistance. For our application it is less clear what kind of meaning energy and power of
X(t) have. We will, however, shortly see what use their are to us.

As the last Result for this subsection we present the so-called Parseval’s relation:

Result 2.2.3 Parseval’s relation for periodic and non-periodic functions
Priestley (1981a, p. 195, 201)

Consider function X(t) and coefficients an and bn from Result 2.2.1. Then it holds that

∫ ∞

−∞
X2(t)dt = π

[1

2
a20 +

∞∑
n=1

(a2n + b2n)
]

Next, consider functions X(t) and G(ω) from equations (2.6) and (2.7). Then it holds
that

∫ ∞

−∞
X2(t)dt =

∫ ∞

−∞
|G(ω)|2(t)dω

Parseval’s relation tells us that Fourier transform is an energy-preserving transformation.4
That is, we can equivalently talk about energy spread out over a time interval or over
a frequency interval. As Priestley (1981a, p. 204) puts it, "{|G(ω)|2dω} represents
the contribution to the total energy from those components of X(t) whose frequencies lie
betweenω andω+dω." Thus, quantity |G(ω)|2 measures the density of energy in a similar
fashion as probability density function measures the density of a particular probability
measure.

The last part of the puzzle is that "energy carried by a sine or cosine term is proportional
to the square of the amplitude" (Priestley, 1981a, p. 9). That is, the greater the amplitude
of a sinusoid, the greater the energy of that sinusoid, and vice versa. This is to say
that if a sinusoid operating at frequency ω0 has a large amplitude (or equivalently, large
energy) compared to other driving sinusoids operating at different frequencies, then we
can deduce that the most important source of swings in X(t) is due to oscillations taking
place at frequency ω0. We can reformulate this observation more compactly as the most
important theoretical insight for our analysis:

By decomposing X(t) into its frequency-domain components via Fourier transform,
we can search for frequencies that influence changes in X(t) the most.
4Depending on the scaling of the Fourier integrals, Parseval’s relation might take slightly differing forms.
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2.2.2 Family portrait of discrete-time Fourier transforms

So far we have established the connection between time and frequency domains for an
aperiodic, continuous function X(t) defined over the range t ∈ (−∞,∞). This connection
was the Fourier pair (2.6) and (2.7). However, in real life time series analysis we never
come across such creatures, as we can measure a given variable only in finite chunks and
at chosen sampling rate. Thus, the Fourier transform (2.7) is unsuitable for empirical
analysis. To treat these challenges, we first introduce the so-called Discrete Time Fourier
Transform (DTFT), which is essentially a version of the Fourier transform for discretely
sampled time series. Imagine we now have an aperiodic, discrete function with uniformly
spaced observations (t = · · · − 2,−1, 0, 1, 2, . . . ) in our disposal. This effectively means
that we are dealing with a time series instead of a continuous function having time as its
argument. We will distinguish a time series from a continuous function by writing {X}t .
Now we can define the DTFT as follows.

Definition 2.2.2 Discrete Time Fourier Transform and its inverse
(Oppenheim, 2017)

The Discrete Time Fourier Transform (DTFT) of time series {X}∞t=−∞, νX , is defined
on interval −π ≤ ω ≤ π as

νX(ω) =
1
√

2π

∞∑
t=−∞

Xte−iωt (2.10)

Further, the inverse DTFT is given by

Xt =
1
√

2π

∫ π

−π
νX(ω)e−iωt dω

The analogy to Fourier integrals is clear; in (2.10) we have replaced the continuous time
integral of (2.7) with a sum over discrete time periods. An interesting property of the
DTFT is that it is periodic of length 2π. Further, in Definition 2.2.2 the scaling term has
again been distributed evenly across the two equations, but as with Fourier integrals, it
would be valid to scale the DTFT by 1

2π and its inverse by 1, or vice versa.
Although a step to right direction, DTFT still leaves us unsatisfied as it deals with

series of infinite length. In practice, we will only have some sample of length N from the
time series in our disposal. We will call such sample a signal. This effectively corresponds
to a situation where we, instead of a time series of infinite length, consider a truncated
version of {X}t , namely
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XM,t =


Xt if − M ≤ t ≤ M

0 otherwise

where N = 2M + 1. Replacing Xt in (2.10) by XM,t yields

νXM (ω) =
1
√

2π

∞∑
t=−∞

XM,te−iωt

=
1
√

2π

M∑
t=−M

XM,te−iωt (2.11)

Equation (2.11) is essentially a "truncated" or "finite" Fourier transform in the sense that
it is a finite-sample equivalent of (2.10). However, usually in literature a creature called
Finite Fourier Transform (FFT) is defined with different indexing convention. In this text
we define FFT as follows:5

Definition 2.2.3 Finite Fourier Transform
(Priestley, 1981a, p. 418)

Consider a signal with observations X1, . . . , XN at uniform intervals. We define the
Finite Fourier Transform, ξX , as

ξX(ω) =
1
√

2π

N∑
t=1

Xte−iωt ,−π ≤ ω ≤ ω (2.12)

Although (2.11) and (2.12) seemingly differ, we can show that they are equivalent up to
a (complex-valued) constant. To see this, we will use the shift property of FFT. Consider
that we take the 2M +1 observations from (2.11) and assign them into a vector X of length
2M + 1, where indexing runs from 1 to 2M + 1.6 Let us denote a circular shift of X by m

steps to the right as X [−m] (see section A.1 in Appendix about circular shifting). Then for
every value in the circularly shifted vector X [−m] (at position n) we have that

X [−m]
n ≡ X〈n−m〉N ∀n ,

where notation 〈k〉N denotes the remainder of division k/N (see again section A.1), and
Xi on the right-hand side is to be understood as a value at position i in vector X . Using
the circularly shifted values, we are ready to introduce the shift property.

5Unlike Priestley (1981a) we don’t scale the FFT with 1√
N
.

6That is, vector value at position n = 1 corresponds to X−M of equation (2.11), n = 2 corresponds to
X−(M+1), and so forth. The final value in vector X at position n = 2M + 1 corresponds to XM+1.
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Result 2.2.4 Shift property of FFT
(dsprelated.com, 2017)

For FFT in (2.12) it holds that

ξX [−m](ω) = e−iω(−m)ξX(ω) (2.13)

That is, FFT of circularly shifted signal coincides with the FFT of the original signal
multiplied by linear phase e−iωm.

Now let us perform a change of variable t = t′ − (M + 1) such that equation (2.11) can be
rewritten as7

νXM (ω) =
1
√

2π

M∑
t=−M

XM,te−iωt

=
1
√

2π

N∑
t ′=1

XM,t ′−(M+1)e−iω(t ′−(M+1))

= eiω(M+1) 1
√

2π

N∑
t ′=1

XM,t ′−(M+1)e−iωt ′

= eiω(M+1) 1
√

2π

N∑
t ′=1

X′M,t ′e
−iωt ′ | eq. (2.12)

= e−iω(−(M+1))ξX ′M,t

where N = 2M + 1 and X′M,t is a linearly shifted version of vector XM,t .8 Thus, the
truncated DTFT in (2.11) is just FFT in (2.12) scaled with linear phase, and from (2.13)
we further deduce that

νXM (ω) = ξX [−(M+1)]M

(ω) (2.14)

This means that in order to calculate the truncated DTFT in (2.11), we can simply calculate
the FFT of circularly shifted (M + 1 steps to right) version of vector XM . Due to their
similarity, from here on we will refer to the truncated DTFT as Finite Fourier Transform
(FFT).

7I am thankful for user msm in Signal Processing forum of Stack Exchange for proposing this derivation
(stackexchange.com, 2017).

8Linear shift means simply that we shift indexing. Values in the linearly shifted vector are in the same
order as in the original vector.
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Although we now have a tool to handle a discrete and finite sample from a time series,
we still face a problem regarding the practical implementation as FFT is defined over a
continuous frequency range −π ≤ ω ≤ π. This is something that computers struggle
to cope with, as the world they live in is inherently discrete. Thus, we need yet another
version of the Fourier transform that is defined over a discrete set of frequencies. This
version goes by the name Discrete Fourier Transform (DFT):

Definition 2.2.4 Discrete Fourier Transform and its inverse
(Mathworks, 2017)

Consider a signal Xt , t = 1, . . . , N . Let also k = 1, . . . , N . Then we can define the
Discrete Fourier Transform of Xt , ηX , as

ηX,k =

N∑
t=1

Xt e−i 2π(k−1)N (t−1) (2.15)

with the inverse DFT taking the form

Xt =
1

N

N∑
k=1

ηX,k ei 2π(k−1)N (t−1)

DFT is a very useful equation and is baked into virtually all statistical software. It allows a
straightforwardway to calculate a discrete-valued estimation for continuously valued FFTs.
There are certain things that are worth noting. First, we let the indices t and k run from 1

to N (instead of 0 to N − 1 as it often is the case) to make the numerical implementation
in Matlab easier. Second, continuous argument ω of FFT has been replaced with discrete
points ωk ≡ 2π(k−1)

N . Third, DFT is periodic with length N . Lastly, unlike with Fourier
integrals and DTFT above, the DFT and its inverse are defined such that there is a scaling
term appearing only in the inverse.9 This choice is made to match the convention used in
Matlab in the implementation of the DFT (Mathworks, 2017).

Practically speaking, whenever we want to evaluate some FFT, we use the DFT as in
(2.15) and scale the output to match the chosen definition for the FFT. For example, if we
were to calculate FFT as defined in (2.12), we would employ the DFT as in (2.15) and
scale the resulting output by 1√

N
.

9Here scaling term 1
N corresponds to the term 1

2π of continuously valued DTFT and FFT.
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2.3 Spectral analysis of stationary processes

2.3.1 Univariate spectrum

In section 2.2 we dealt only with deterministic processes. This, of course, is not totally
satisfactory as the world Economists live in is inherently random. The goal of this section
is to extend the ideas developed so far to treat stochastic settings. Throughout the section
we will be working with a weakly stationary stochastic process {X(ω)}t , where ω ∈ Ω
represents a probability singleton, and Ω constitutes the probability space (Ω, F , P). As
the naming conventions of probability theory and spectral analysis unfortunately coincide
(ω indicating both angular frequency and probability singleton), we denote a probability
singleton as α. Thus, following the usual convention, we write X(t, α) either for a single
F -measurable random variable or for the stochastic process (i.e. collection of random
variables) whenever the meaning is obvious from the context.10 X(t) will refer to some
realization of random variable X(t, α)

Similar to the deterministic case, we want to construct a Fourier representation for a
stationary stochastic process X(t, α). However, there are problems that immediately face
us:

1. How dowe deal with the fact that a stochastic process can havemultiple realizations?

2. Stationary process X(t, α) does not die away, i.e. is not absolutely integrable.

Focusing on the first point, we will for now consider some certain realization path of the
stochastic process X(t, α), namely X(t, α∗). To treat the second problem, Priestley (1981a,
p. 207) considers a truncated version of X(t, α∗) of the form

XT (t, α∗) =


X(t, α∗) , if − T ≤ t ≤ T

0 , otherwise

where the crucial condition of absolute integrability is (trivially) fulfilled. In this case we
can construct a representation akin to (2.6)-(2.7) for XT (t, α∗), namely

XT (t, α∗) =
1
√

2π

∫ ∞

−∞
G( f )eiωt dω (2.16)

10When we want to differentiate between a single random variable and a stochastic process we write
X(t, α) for the random variable and {X(α)}t for the stochastic process.
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and

G(ω) = 1
√

2π

∫ ∞

−∞
XT (t, α∗)e−iωt dt

=
1
√

2π

∫ T

−T
XT (t, α∗)e−iωt dt (2.17)

Here |GT (ω)|2 has the same interpretation as in section 2.2.1, i.e. the energy density
function of XT (t, α∗). This interpretation, however, gives rise to a third major problem:

3. lim T→∞ |GT (ω)|2 is not finite (i.e. does not exist), and hence we cannot meaning-
fully talk about energy distribution over the whole interval (−∞,∞).

To treat this problem, Priestley (1981a, p. 208) instructs to look at power instead of energy,
which suggests to consider expression

lim
T→∞

|GT (ω)|2
2T

To allow the possibility of multiple realizations (and hence treat the first problem), we
introduce the expectation operator into the above equation, giving the following definition.

Definition 2.3.1 Power Spectral Density
Priestley (1981a, p. 208)

The power spectral density function h(ω) of stationary stochastic process X(t, α) is
defined as

h(ω) ≡ lim
T→∞

E
[ |GT (ω)|2

2T
]

(2.18)

When h(ω) exists, h(ω)dω has the interpretation of being the "average (over all realiza-
tions) of the contribution to the total power from components in X(t) with frequencies
betweenω andω+dω" (Priestley, 1981a, p 208).11 For this reason h(ω) is usually referred
to as the power density function of X(t, α).12

11For this interpretation to be completely valid, we actually need a more general type of Fourier expansion
that is able to represent the complete realization interval (t = −∞ to∞) instead of the Fourier integral over
finite interval (t = −T to T) in (2.16). Luckily such representation does indeed exist. This result is due to
the so-called Spectral Representation Theorem. For a thorough discussion, see Priestley (1981a, p. 244).

12To be completely accurate, what is referred to as the power density function is the normalized version
h(ω)
σ2

X

, as it has the same properties as probability density function. However, for our analysis the normalization
is not relevant.
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Although summarizingwhat spectral density is about, Definition 2.3.1 does not provide
a straightforward tool for calculating h(ω). Fortunately, given (2.18), the Fourier transform
lends itself yet again to our use by permitting a representation that bridges the time-domain
and frequency-domain analyses by linking the autocovariance function γ(r) of X(t, α) to
the spectral density h(ω) as follows:

Result 2.3.1 Relationship between spectral density and autocovariances
Priestley (1981a, p. 210-225)

In continuous time case, the autocovariance sequence γ(τ) (τ ∈ (−∞,∞)) of X(t, α)
is linked to the spectral density function h(ω) of X(t, α) via Fourier pair representation

h(ω) = 1

2π

∫ ∞

τ=−∞
γ(τ) e−iωr dτ (2.19)

γ(τ) =
∫ ∞

−∞
h(ω) eiωτ dω (2.20)

In discrete time case, the autocovariance sequence γ(r) (r = 0, ±1, ±2, . . . ) of X(t, α)
is linked to the spectral density function h(ω) of X(t, α) via discrete-time Fourier pair
representation

h(ω) = 1

2π

∞∑
r=−∞

γ(r) e−iωr − π ≤ ω ≤ π (2.21)

γ(r) =
∫ π

−π
h(ω) eiωr dω , r = 0, ±1, ±2 . . . (2.22)

These results are special cases of the so-called Wiener-Khintchine Theorem and Wold’s
Theorem, see Priestley (1981a, p. 219, 222). What they state is that we can obtain
the spectral density of (either continuously or discretely valued) X(t, α) by applying the
Fourier transform to the autocovariance function of X(t, α).

2.3.2 Cross-spectrum

Above we saw that autocovariances and spectral density are essentially two sides of the
same coin. The generalization tomultivariate case is rather straightforward. Aswe are able
to investigate co-movement of two series in time-domain using their cross-covariances,
we would expect there to be a natural extension to the spectral density as well, a sort
of cross-spectral density that would summarize the co-movement of the two series in
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frequency-domain. This indeed is the case, and the multivariate version corresponding to
(2.21) - (2.22) are given by (Priestley, 1981b, p. 667)

hi j(ω) =
1

2π

∞∑
r=−∞

γi j(r)e−iωr − π ≤ ω ≤ π (2.23)

γi j(r) =
∫ π

−π
hi j(ω) eiωr dω , r = 0, ±1, ±2 . . . , (2.24)

where i refers to stochastic process Xi(t, α) and j to X j(t, α), γi j(r) is the cross-covariance
function, and hi j(r) is referred to as the cross-spectral density.

2.4 Estimation of spectral densities

In previous section we laid out the theoretical concepts for spectral analysis. Now the
task is to see how these concepts are employed in a real-world setting. That is, we want
a practical cook-book recipe how to obtain estimates for spectral densities using only a
finite amount of observations. In this section we first develop two "natural" estimators for
the spectral density and see why they are not getting the job done. We then improve our
estimators by introducing a method called windowing.

2.4.1 Univariate natural estimators

Our goal in this subsection is to obtain an estimate for the spectral density h(ω).13 It
turns out there are many ways to achieve this. To begin our estimation process, we must
first choose between parametric and non-parametric methods. Like the name suggests,
parametric methods involve choosing a pre-fixed model with certain parameters, which
then is fitted to data. Using the properties of the fitted model one can estimate statistical
features of interest. On the contrary, non-parametric methods are "parameter free" in
the sense that no a priori assumptions about the functional form of the model are made.
In this thesis we will consider perhaps the two most common non-parametric spectral
estimators, called periodogram and correlogram (Stoica and Moses, 2004, p. 22). These
estimators can be though of as "natural" estimators of h(ω) as they are directly linked to
the population-based equations (2.18) and (2.21).

We start by defining the peridogram. For the sake of the conversation below, we
consider to have a finite sample of N observations X0, X1, . . . , XN−1, drawn from time
series {X}t , in our disposal.

13We will assume that h(ω) is continuous for all ω. This will be fulfilled if γ(r) is absolutely summable
(Priestley, 1981a, p. 416). Most of the common processes (AR, ARMA) have continuous spectra.
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Definition 2.4.1 Periodogram
Priestley (1981a, p. 395)

Given N observations X0, X2, . . . , XN−1 drawn from stochastic process X(t, α), function
IN (ω), called the periodogram, is defined for all ω in the range −π ≤ ω ≤ π as

IN (ω) =
2

N

��� N∑
t=1

Xte−iωt
���2

Recall nowDefinition 2.3.1 for the power spectral density, which is essentially the expected
value of squared Fourier transform of continuous time parameter function X(t, α), taken
to the limit. The periodogram is the same thing but adapted to finite case. To see this,
consider that since we now have only N discrete observations instead of a continuous range
of observations, we can in equation (2.18) replace the term 2T (representing the length
of the interval) with N . Furthermore, we can neglect the expectation and limit operators
since the only available information on X(t, α) is the finite sample X1, . . . , XN (Stoica and
Moses, 2004, p. 22). To conclude that the periodogram is just a (scaled) squared value of
the FFT in (2.12), notice that

IN (ω) =
2

N

��� N∑
t=1

Xte−iωt
���2

=
4π

2πN

��� N∑
t=1

Xte−iωt
���2

=
4π

N

��� 1
√

2π

N∑
t=1

Xte−iωt
���2

=
4π

N
|ξX(ω)|2 (2.25)

If we define the "modified periodogram" (Priestley, 1981a, p. 416) as I∗N ≡
N
4π IN (ω), then

we can write our first "natural" estimator, ĥp(ω), of spectral density h(ω) as

ĥp(ω) ≡ I∗N (ω) = |ξX(ω)|2 (2.26)

Now we turn to the second "natural" estimator, i.e. the correlogram. Recall equation
(2.21)which is a population-based equation linking the spectral density to autocovariances.
If we in (2.21) replace the population autocovariance function γ(r)with its (biased) sample
estimator
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γ̂(r) = 1

N

N−|r |∑
t=1

(Xt − µ)(Xt+|r | − µ) ,

where µ denotes the sample average of Xt , we obtain the correlogram estimator ĥc(ω) of
spectral density h(ω):14

ĥc(ω) = 1

2π

∞∑
r=−∞

γ̂(r)e−iωr

=
1

2π

N−1∑
r=−(N−1)

γ̂(r)e−iωr (2.27)

That is, ĥc(ω) is the (scaled) FFT of the autocovariance estimates.
At this point we have developed our two "natural" estimators ĥp(ω) and ĥc(ω). As

they both estimate the same quantity, it is not totally surprising that they can be shown to
coincide with each other15, i.e.

ĥp(ω) = ĥc(ω)

Although the estimators are mathematically equivalent, they offer different viewpoints in
a similar way population based equations (2.18) and (2.21) do. However, we are still not
done. In fact, our natural estimators are actually poor estimators of the actual (continuous)
spectral density h(ω)! Priestley (1981a, p. 429 - 432) and Stoica and Moses (2004,
p. 25) discuss in length why this is the case. A short answer is that, looking from the
perspective of ĥc(ω) in (2.27), with values of |r | close to N − 1 the autocovariances are
poorly estimated. Sometimes it is said that the tail autocovariances exhibit too "wild" a
behaviour (Priestley, 1981a, p. 432), consequence of which is that the spectral density
estimator exhibits too large a variance to be considered as providing good enough estimates
for h(ω). To remedy this we would have to come up with a way to reduce the effect of the
"tail" autocovariances in our estimation process. This procedure will be discussed in the
next sub-section.

2.4.2 Consistent estimation of univariate spectrum

To overcome the problem of natural estimators being too erratic, many different methods
have been proposed in the literature. Stoica and Moses (2004, ch. 2.5 - 2.7) offer a

14Stoica and Moses (2004, p. 23) discuss why biased sample estimates are usually used in conjuction
with spectral analysis instead of unbiased estimates.

15See Priestley (1981a, p. 416, 435) or Stoica and Moses (2004, p. 24)
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summary of these methods. One of the most earliest approaches is the so-called Bartlett
method (Bartlett, 1948). The idea in Bartlett method is to split the data into sub-samples
of equal length, and average the periodograms calculated over each sub-sample. A refined
version of the same idea is due to Welch (1967), with the additions being that sub-samples
are allowed to overlap, and a certain window function is applied to the sub-sample values
before the periodogram is computed. Welch’s method is widely used; inter alia, it is the
default approach adopted in Matlab’s Signal Processing toolbox.

However, in this thesis we will highlight the so-called Blackman-Tukey method (Black-
man and Tukey, 1958) which will be used in our empirical work. The main reason for
choosing this particular estimation method is to obtain as comparable results as possible
with Schüler et al. (2015). Furthermore, the Blackman-Tukey approach is fairly intuitive,
as it explicitly treats the problem of "wild" tail autocovariances by introducing a lag win-
dow truncating the tails of the autocovariance function from the estimation procedure.
Formally, in the Blackman-Tukey method we consider a modified version of the estimator
in (2.27):

Definition 2.4.2 Blackman-Tukey estimator
Stoica and Moses (2004, p. 37), Priestley (1981a, p. 434)

Given sample estimates γ̂(r) for autocovariance function γ(r) of X(t, α), the Blackman-
Tukey estimator of spectral density h(ω) is defined as

ĥ(ω)BT =
1

2π

N−1∑
r=−(N−1)

λ(r)γ̂(r) e−iωr (2.28)

where λ(r) is some even function16 that decays smoothly to zero with r , i.e. there exists
M < N − 1 such that, for |r | > M , λ(r) = 0.

We can see that λ(r) acts as a weighting function, applying decreasing weights to auto-
covariances with greater lags, and for |r | > M effectively truncating the corresponding
autocovariances. For this reason λ(r) is usually referred to as the lag window.

It is instructive to write (2.28) in a slightly differing form. Let us denote the (scaled)
FFT of λ(r) as W(ω), i.e.

W(ω) = 1

2π

N−1∑
s=−(N−1)

λ(s)e−iωs

16That is, λ(−s) = λ(s) such that λ(0) = 1.
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Then it is straightforward to show that (Priestley, 1981a, p. 435)

ĥ(ω)BT =

∫ π

−π
h̄p(θ)W(ω − θ)dθ

This means that we can write the Blackman-Tukey estimator as a locally weighted average
of the periodogram estimator. The intuition is that we can reduce the erratic behaviour
of the periodogram by locally averaging it over a continuous range of frequencies. This
is equivalent to reducing the significance of tail covariances by applying a lag window
in time-domain. Since W(θ) operates in the same manner for the periodogram as λ(r)
for the autocovariances, W(θ) is often referred to as a "spectral window"; it offers a view
on the periodogram through a narrow window from ω − ε to ω + ε (Priestley, 1981a, p.
436). W(θ) assigns effectively zero weights to ĥp(θ) when θ escapes some interval (−ε, ε)
centered atω, i.e. when the distance |ω−θ | becomes greater than the fixed distance |ω−ε |
(Priestley, 1981a, p. 436).

Given our discussion above, it is clear that the choice of λ(r), or equivalently W(ω),
is crucial for the performance of ĥBT as an estimator. So far we haven’t said anything
concrete about the actual from of either one. As λ(r) and W(ω) constitute a Fourier pair,
it is obvious that if we specify the functional form of either one we will also define the
functional form of the other. There are many different possibilities how to select these
window functions, and no attempt is made here to give an exhaustive list. Instead, we
introduce one particular choice which will be used in our empirical analysis in Chapter 3.
For an extensive exposition for different choices of lag and spectral windows one can turn
to section 6.2.3 of Priestley (1981a).

The lag window introduced here is the so-called Parzen lag window, defined as (Priest-
ley, 1981a, p. 443)

λ
(
r
)
=


1 − 6( r

M )2 + 6
( |r |

M

)3 for |r | < M
2

2(1 − | r
M |3) for M

2 ≤ r ≤ M

0 otherwise

An important decision is how to select the truncation parameter M < N − 1 as it brings
about a trade-offbetween resolution and statistical variance of the spectral density estimator
(Stoica and Moses, 2004, p. 41). Alternatively, there is a trade-off between variance and
bias. Table 2.1 illustrates these trade-offs, and Figure 2.1 depicts Parzen lag window with
truncation parameter M = 69. We will discuss the selection of M in more detail in section
3.3.
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Figure 2.1: Parzen lag window with truncation parameter M = 69.

M ↑ variance ↑ bias ↓ resolution ↓
M ↓ variance ↓ bias ↑ resolution ↑

Table 2.1: How increasing/decreasing M affects properties of ĥ(ω)BT .

2.4.3 Multivariate estimators

We can straightforwardly generalize the univariate estimators to treat the multivariate case.
Consider we have S stationary time series {X j}t , j = 1, . . . , S, and we drawN observations
from each of them. If we define the modified periodogram matrix as (Priestley, 1981b, p.
694)

I∗N ≡ {I∗N, jh} j, h = 1, . . . , S

such that

I∗N, jh =
1

N
ξXj (ω) ξT

Xh
(ω) ,

where T denotes conjugation and transposition, and ∀ j ξXj (ω) is defined as in (2.12), then
the periodogram estimator matrix ĥp is given by

ĥp = I∗N (2.29)

30



Estimation of spectral densities

The diagonal of ĥp comprises of univariate spectral densities and off-diagonal elements
represent cross-spectral densities. Similarly, the matrix of correlogam estimators is given
by (Priestley, 1981b, p. 667)

ĥc =
1

2π

N−1∑
r=−(N−1)

γ̂(r)e−iωr ,

where matrix γ̂(r) comprises of cross-covariance estimators γ̂ jh, i.e.

γ̂(r) = {γ̂ jh(r)} j, h = 1, 2, . . . , S

γ̂ jh(r) =
1

N

N−|r |∑
t=1

(X j,t − µ j)(Xh,t+|r | − µh)

where r = 0, ±1, . . . , ±(N − 1). µ j and µh denote the sample averages of X j and Xh.
For consistent estimation of the cross-spectral densities, we introduce the Blackman-

Tukey estimator matrix as (Priestley, 1981b, p. 694)

ĥBT (ω) = 1

2π

N−1∑
r=−(N−1)

λ(r)γ̂(r)e−iωr , (2.30)

where the element ( j, h) of ĥBT (ω) is given by

ĥi j(ω) =
1

2π

N−1∑
r=−(N−1)

λ(r)γ̂ jh(r)e−iωr (2.31)

We see that the only difference to the univariate case (2.28) is that we have replaced the
autocovariance estimator γ̂ j j(r) with the cross-covariance estimator γ̂ jh(r).
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Chapter 3

Constructing Composite Financial Cycle

In this chapter we describe the construction of the Composite Financial Cycle, or CFC for
short. Our approach here follows closely research conducted at the European Central Bank
(Schüler et al., 2015). The goal is to derive a financial cycle proxy having the following
properties:

1. Parsimonious description of developments in the underlying macro-financial sector.

2. Good predictor of periods of high financial stress.

In Chapter 4 we will test how well our CFC fairs in explaining overheating in the macro-
financial sector, and also compare our results with those of Schüler et al. (2015).

The construction of the CFC comes in four different phases, each of which will be
covered in a separate section. First in Phase 1 (section 3.1) we discuss the selection of
relevant variables for our analysis. Phase 2 (section 3.2) examines the aggregation of
the chosen variables into a composite stress index, which will have a similar structure
as the Composite Indicator of Systemic Stress á la Holló et al. (2012). Phase 3 (section
3.3) dives into the frequency-domain analysis. We become acquainted with the so-called
Power Cohesion measure (PCoh) championed by Schüler et al. (2015), which is essentially
a weighted average of cross-spectral densities. PCoh offers a way to endogenously identify
a frequency band of most important co-movement across variables of interest. Lastly in
Phase 4 (section 3.4), the stress index is filtered using a band-pass filter calibrated with
the frequency band identified in Phase 3. Figure 3.1 summarizes the four steps.

3.1 Selecting relevant variables

As explained above, one of the desired properties of our financial cycle proxy is to
predict financial stress. Hence, we want to include variables whose swings have the most
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Figure 3.1: Roadmap to Chapter 3.

considerable effect to the macro-financial sector as a whole. We select our variables
based on the frequency of appearance in the junction of strands of literature dealing with
financial cycles and early warning indicators.1

Similarly to Drehmann et al. (2012), we include private credit and house prices as our
first two variables. Credit is a common guest in literature revolving around financial stabil-
ity. Works such as Aikman et al. (2015), Schularick and Taylor (2012), and Geanakolpos
(2010) have stressed the role of credit in determining swings in the financial conditions
and asset prices. Importance of credit has not gone unnoticed in policy work either as it
has been firmly baked into the Basel III regulation in the form of credit-to-GDP gap. On
the other hand, the burst of the U.S. real-estate bubble in 2007-2008 exhibited how dire
an effect negative developments in the residential sector can have on the economy. Third
variable we include is local benchmark stock index. Swings in stock prices are associated
with boom-bust cycles in the financial markets. Although Drehmann et al. (2012) find
stock prices to be less-fitting when talking about financial cycles, later research (Schüler
et al., 2015) has challenged this view by claiming that stock prices do share important
common cyclicalities with credit and residential prices. Further, stock returns are often
included in early warning exercises (Tölö et al., 2017). Further, Schüler et al. (2015, p. 3)
also include the government benchmark 10-year bond yield in order to "complete... the
portfolio set faced by economic agents". Thus, in order to derive comparable results, we
also include bond yields.

Together these four variables are referred to as financial cycle variables. The raw
series are fetched from sources such as BIS, ECB and OECD through Bank of Finland’s
database link. Table 3.1 provides a summary of the used variables and their mnemonics.
For the rest of the text, variables are referred to with their mnemonics. A detailed list of
series definitions and data sources is provided in section A.2 of Appendix.

1For an excellent survey of most common variables in early warning exercises, please see Table 1 in Tölö
et al. (2017).
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Name Mnemonic Unit

Credit to non-fin. private sector Credit QoQ % changes

Residential property prices House prices QoQ % changes

Stock prices Stocks QoQ % changes

10y gov. bond yield Bond yield QoQ %-point changes

Table 3.1: Financial cycle variables used in constructing Composite Financial Cycles.

In order to use the variables in our analysis certain transformations are conducted.
First, series that are originally expressed in nominal terms (credit and stocks) are deflated
using country specific consumer price index. Section A.3 in Appendix presents the formal
treatment of deflation. Secondly, variables need to be de-trended as spectral analysis can
only deal with stationary series. De-trending is performed by simple differencingmethods.
Section A.4 in Appendix presents the formal treatment of differencing. Ultimately, credit,
house prices, and stocks are presented as percentage changes. Bond yields are presented
as percentage point changes. Finally, series for each country are truncated according
to the shortest one. For example, if a country has data from 1970Q1 until 2016Q2 for
three financial cycle variables but for the 4th one only from 1980Q2 until 2016Q2, then
all variables for that country are truncated to the time interval 1980Q2-2016Q2. Table
3.2 provides a summary of the common time samples for the treated data series for each
country in sample. We will denote the treated series as

I1 : Credit

I2 : House prices

I3 : Stock prices

I4 : Bond yield

(3.1)

so that {Ii}t is to be understood as a time series of ith variable.

3.2 Stress index

Phase two deals with the aggregation of chosen variables into a composite stress index.
The method followed here was originally introduced by Holló et al. (2012), and modified
for current context by Schüler et al. (2015). Ideally, the stress index indicates the amount
of stress in the macro-financial sector at a given point in time. For a thorough discussion
about the optimal design of stress indices, reader is instructed to e.g. Holló et al. (2012)
and Huotari (2015). In general, the construction of a stress index involves three steps:
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Country
Financial cycle variables

QoQ differencing

AUT 1986Q4-2016Q2

BEL 1985Q3-2016Q2

DEU 1970Q2-2016Q2

DNK 1983Q4-2016Q2

ESP 1985Q2-2016Q2

FIN 1971Q4-2016Q2

FRA 1970Q2-2016Q2

IRL 1971Q3-2016Q1

ITA 1970Q4-2016Q2

NLD 1970Q2-2016Q2

PRT 1988Q2-2016Q2

SWE 1970Q2-2016Q2

GBR 1970Q2-2016Q2

EA 1987Q2-2016Q2

Table 3.2: Common time samples of financial cycle variables after treatments.

1. Pre-multiplying variables such that increases in their value translate to improvement
in the macro-financial sector.

2. Normalization of variables.

3. Aggregation of variables.

Below we will treat each of these steps in separate subsections.

3.2.1 Pre-multiplying variables

As is common in related literature, we want an increase in the value of a variable to
indicate improvement in macro-financial conditions. This also means that increases in the
resulting CFC indicate improving conditions. Common stylized facts imply that rising
credit and asset prices translate to improving economic conditions. Therefore, three from
our four variables – credit, house prices, and stocks – already have the "right" sign, but as
bond yields are inversely related to their price, we pre-multiple the bond yield values by
−1.
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3.2.2 Normalizing variables

Before the financial cycle variables are aggregated into a composite stress index, they are
normalized into a common scale in order to ensure comparability. In our work we follow
Holló et al. (2012) and normalize the variables using the so-called empirical cumulative
distribution function transformation, or ECDF transformation for short. When the ECDF
transformation is performed on an arbitrary time series {X}t , we denote the resulting
normalized series as {z}t . Similarly to Holló et al. (2012), we refer to zi (i.e. the ECDF
transformed financial cycle variable Ii) as stress factor as it constitutes one of the building
blocks of the resulting stress index.

Let us formalize the normalization process. Consider we are given an arbitrary time
series {X}t from which a finite sample of consecutive n observations X = (X1, X2, . . . , Xn)
has been drawn. Now order the observations into ascending order. We call the resulting
ordered vector of values as ordered sample and we denote it as

X̄ ≡ (X[1], X[2], . . . , X[n])

r = 1, 2, . . . n is referred to as the ranking number assigned to a particular realization.2 X̄

has the property that X[1] ≤ X[2] · · · ≤ X[n]. That is, the first observation in X̄ , X[1], is the
smallest of all sample observations and has the ranking number r = 1, the second, X[2], is
second largest and has the ranking number r = 2, and so forth.

Assume first that our sample includes only distinct values, i.e. there are no repeated
values in the ordered vector. In this case the ECDF transformed series {z}t is computed
from {X}t as follows. For every j ∈ [1, n], define the ECDF as

Fn(X j) =


r
n for X[r] ≤ Xt < X[r+1] , r = 1, 2, . . . , n − 1

1 for Xt ≥ X[n]
(3.2)

The ECDF Fn(x∗) measures the "total number of observations from time series {X}t not
exceeding a particular value X∗ = r∗ divided by the total number of observations in the
sample" (Holló et al., 2012, p. 15). The transformation thus projects series into a unit-
free ordinal scale with range (0, 1], essentially mimicking a probability measure under
which all events have a positive probability. Thus, we can project each drawn observation
X j , j = [1, 2, . . . , n], into a transformed value z j according to the rule

z j = Fn(X j) ∀ j (3.3)

2Ranking number is distinguished from a time subscript by square brackets.
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On the other hand, if the sample X includes repeating values, then the ECDF given
in equation (3.2) has to be slightly modified.3 Repeating values appear back-to-back in
the ordered sample and hence also have back-to-back ranking numbers. This in turn, by
equation (3.3), would mean that repeating values are projected into differing transformed
values. However, we wish to assign all repeated observations the same transformed value.
We will achieve this by setting the transformed values for repeated observations as the
average of the corresponding back-to-back ranking numbers, unless the repeated values
equal the largest observation X[n] inwhich case these repeated observations get transformed
values equal to 1. Formally, if our sample of n observations drawn from {X}t includes
repeated values, then (3.2) becomes

Fn(X j) =

β[r]
n for X[r] ≤ Xt < X[r+1] , r = 1, 2, . . . , n − 1

1 for Xt ≥ X[n]

where βr takes values depending on whether the current observation (rth observation in
the ordered sample) is unique or repeated. If the observation is unique, then βr = r . If
the observation is repeated, then βr equals average of the ranking numbers of repeated
observations.

As an example, imagine that two observations in the ordered sample with ranking
numbers r − 1, r < n are equal. Then

βr−1 = βr =
(r − 1) + r

2

On the other hand, if the two repeated values equal the maximum value of the sample, i.e.
r = n, then

βr−1 = βr = 1

As in the case of non-repeated values, X j are projected into transformed values z j via
equation (3.3).

In Holló et al. (2012, p. 15) authors note that at this point we still haven’t introduced the
"real-time" character of the stress index. To feature this property, we will apply the ECDF
transformation recursively for new observations drawn from {X}t . Precisely, the non-
recursive transformation in (3.3) applies to all first n observations which can be thought
of as an "initial" sample. Imagine that, in addition to the initial sample of n observations,
we draw N − n more observations from {X}t . All these subsequent observations are
transformed via ECDF with one new observation added at a time. Assuming again that

3This special case wasn’t clearly distinguished either in Holló et al. (2012) nor Schüler et al. (2015).
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there are no repeated values, for k ∈ [1, N − n] define the updated empirical ECDF as

Fn+k(Xn+k) =


r
n+k for X[r] ≤ Xn+k < X[r+1] , r = 1, 2, . . . , n − 1, . . . n + k − 1

1 for Xn+k ≥ X[n+k]
(3.4)

where n+ N is the number of observations in the full sample. Now for each k ∈ [1, N − n]
we project Xn+k into a transformed variable zn+k according to the rule

zn+k = Fn+k(Xn+k) (3.5)

Repeated values are handled exactly the same way as in the pre-sample case.
In conclusion, when we normalize the four financial cycle series {Ii}t, i = 1, . . . , 4,

using the method described in this subsection, we obtain four stress factor series {zi}t, i =

1, . . . , 4 which will be used in the next subsection.

3.2.3 Aggregation of variables

After pre-multiplication and normalization of the financial cycle variables we are ready
to aggregate them into a composite stress indicator. The aggregation method is a slight
modification of the one used in Holló et al. (2012), and relies on time-varying weights
assigned to variables. The weights are determined via exponentially weighted moving
averages (EWMA) of the correlations between individual stress factors.

Formally, let us denote the resulting composite stress index series as {ψ}t . Then the
stress index value at given time t is given by

ψt = (1′ Ct 1)−1 · 1′Ct Zt

where

Zt = [z1,t, . . . zS,t]′

is a vector of S = 4 stress factors at time t, and 1 is a vector of ones. Ct denotes the
correlation coefficient matrix at time t:

Ct =



ρ11,t ρ12,t . . . ρ1S,t

ρ21,t ρ22,t . . . ρ2S,t

...
... . . .

...

ρS1,t ρS2,t . . . ρSS,t


(3.6)
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Correlation between stress factors zi and z j , ρi j , is given by

ρi j =
σi j,t

√
σii,t σj j,t

, i, j = 1, . . . , 4 ,

where σi j denotes the covariance between zi and z j , i.e.

σi j,t ≡ Covt(zi,t+1, z j,t+1)

σ2
i,t ≡ Covt(zi,t+1, zi,t+1) = Vart(zi,t+1)

As mentioned above, we assume that covariances are estimated recursively on the basis of
EWMA dynamics, which means that ∀t4

σi j,t = λσi j,t−1 + (1 − λ) (zi,t −
1

2
) (z j,t −

1

2
) for i , j

σii,t = λσii,t−1 + (1 − λ) (zi,t −
1

2
)2

The estimated covariance for current period is thus a linear combination of past estimated
covariance and current values of the two stress factors. Covariances are initialized using
first 8 observations for each variable. The decay parameter λ is set to λ = 0.89. As a
final note, correlations appearing in (3.6) are restricted such that negative correlations are
forced to zero. That is, whenever ρi j,t < 0, we set ρi j,t = 0. At first glance this seems
to be a rather technical restriction, but Schüler et al. (2015, p. 12) argue that imposing
the restriction ensures that the CFC emphasizes "directional developments of systemic
nature".

3.3 Power Cohesion and endogenous frequency band

The third phase in construction of the CFC deals with identifying a frequency band that
will be used in filtering the composite stress index ψ. The identification of this band is
conducted using the so-called Power Cohesion (PCoh) metric introduced in Schüler et al.
(2015). In essence, PCoh is a function whose values correspond to average of normalized
cross-spectral densities of the financial cycle variables. The higher the value of PCoh at
given frequency, the more co-movement variables exhibit at that frequency. The frequency
band is obtained by extracting a range of frequencies capturing the most mass under the

4Since stress factors lie in interval (0, 1], subtracting the theoretical median 1
2 corresponds to demeaning.

We notice further that σii = σ
2
i (variance = volatility to the second power).
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PCoh curve. In more detail, PCoh at angular frequency ω is given by (Schüler et al., 2015,
p. 6)

PCohI(ω) ≡
1

S(S − 1)
∑
i, j

|hi j(ω)|
σi σj

(3.7)

where i, j ∈ {1, . . . , S} , ω ∈ [−π, π], and hi j(ω) denotes the cross-spectral density of
series {Ii}t and {I j}t . Further, σi denotes the standard deviation of {Ii}t .

We estimate the cross-spectral densities as laid out in sections 2.4.2 and 2.4.3. That
is, we will use the Blackman-Tukey estimator in conjunction with Parzen lag window.
These choices are made to match the selections of Schüler et al. (2015) in order to derive
comparable results. For ease of reference, we reproduce the Blackman-Tukey estimator
for the cross-spectral density (equation 2.31)

ĥBT
i j (ω) =

1

2π

N−1∑
r=−(N−1)

λ(r)γ̂i j(r)e−iωr (3.8)

As noted in our discussion about the consistent estimation of spectral densities, the choice
of truncation parameter M = 2N + 1 is important as it specifies a trade-off between
variance and bias of the estimator. Following the choice made in Schüler et al. (2015, p.
10), in our work we also set M = d5

√
Te. Schüler et al. (2015, p. 10) argue that this choice

is made in order to obtain rather unbiased estimates at the cost of increased variance. As
an example, for Germany we have in total 185 observations, which results in M = 69.

In order to calculate the estimator in (3.8) we rely onMatlab’s Fast Fourier algorithm.
Recalling our discussion in section 2.2.2 about calculating FFTs, we first circularly shift
the term λ(r)γ̂i j(r) in (3.8) by N steps to the right, and then feed the result to the DFT
algorithm (2.15).5 In section A.6 of the Appendix we provide a Matlab code snippet
for calculating equation (3.8). Once we have estimated the cross-spectral densities, the
frequency band containing most of the co-movement between variables is determined by
the following optimization problem:6

5In order to conserve power correctly, we need to scale the output by 1
N . Although we pay extra attention

to right scaling of the DFT, in our setting this is actually not crucial as the resulting frequency band is
identified by the relative shapes of the estimated cross-spectral densities rather than their absolute values.

6Note that in Schüler et al., 2015 equation 17 the problem was written as

min
ω2,ω1

∫ ω2

ω1
PCohX (ω) dω∫ π

0
PCohX (ω) dω

≥ p ,

which is somewhat misleading since the point is to minimize the distance ω2 − ω1.
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min
ω2,ω1

ω2 − ω1 (3.9)

s.t.

∫ ω2

ω1
PCohI(ω) dω∫ ωmax

0
PCohI(ω) dω

≥ p

where p ∈ [0, 1] indicates a ratio of co-movement we want to capture from the frequency
interval [0, ωmax]. We set ωmax =

2π
5 , meaning ω1, ω2 ∈ [0, 2π5 ] such that ω2 ≥ ω1.7

Restricting ω1 and ω2 to interval [0, 2π5 ] essentially means that cycles with periods below
5 quarters (or equivalently above angular frequency 2π

5 ) are excluded from the frequency
band by assumption. See Schüler et al. (2015) page 11 for discussion about this assumption.

3.4 Filtering the stress index

In the fourth and last phase we use the band-pass filter championed by Cristiano and
Fitzgerald (2003) to smooth the stress index.8 The idea of a band-pass filter is to let only
frequencies within a certain band to pass, and filter out components operating at all other
frequencies. The filter comes in many forms which, even at best, are only approximations
of the optimal band-pass filter. We will adopt the version that authors call Random Walk
Filter, which would be optimal band-pass filter if the data used was generated by a random
walk. However, Cristiano and Fitzgerald (2003) note that the differences between the
Random Walk filter and more advanced filters are typically small, so often Random Walk
filter is a good choice due to its character of being fairly parsimonious. Schüler et al.
(2015, p. 11) also use this version by an argument that they want to keep the distorting
effects of the filter to minimum. Section A.5 in Appendix offers a short formal treatment
of the Random Walk filter.

As the band-pass filter is a two-sided filter, it suffers from end-point problems in
the sense that values close to the edges of a finite sample are poorly estimated. As an
attempt to remedy this problem, Schüler et al. (2015) forecast the stress index 10 years
forward using a fitted AR(1) model. They then filter the stress index (with forecasts)
using the band-pass filter, and finally cut observations from the end of the filtered series

7Schüler et al., 2015 set ωmax = π, which means that they take the co-movement across all possible
frequencies into account in the denominator. This might not be desirable, however; when ωmax = π, for
PCoh functions that have a lot of mass at frequencies above the threshold ω2 we often don’t find a portion∫ ω2

ω1
PCohI (ω) dω that is greater than p∗

∫ π
0

PCohI (ω) dω. In this case we cannot determine the frequency
interval endogenously using PCoh. We thus have a reason to suspect that there is a typo in the original
paper, and for this reason in this thesis we set ωmax =

2π
5 .

8Codes are available at Federal Reserve Bank Atlanta’s homepage
https://www.frbatlanta.org/cqer/research/bpf.aspx
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by an amount corresponding to the amount of forecasted values. We employ the same
procedure, however we use a shorter forecast horizon of 2 years as instructed by Cristiano
and Fitzgerald (2003) in the code file accompanying the paper (see footnote 8).

We have now derived our financial cycle proxy. In the next chapter we will scrutinize
how the obtained CFCs perform in early warning exercises.
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Chapter 4

Empirical Results

In this chapter we present our empirical results. First, we will give an overview of the
obtained CFCs as well as the periodicity (or equivalently, frequency) bands. Secondly, we
will present results from two early-warning exercises to scrutinize how well our financial
cycle proxy explains known periods of banking crises and financial stress. Lastly, we will
comment how our results compare with ones obtained by Schüler et al. (2015).

4.1 Visualization of Composite Financial Cycles

Figure 4.1 summarizes the obtained CFC as well as the unfiltered stress index ψ for each
country in our sample. Shaded areas represent known periods of banking crises as defined
by Laeven and Valencia (2012).1 Visual inspection reveals that for most parts the CFCs
fulfil the desired criteria, in particular that a) cycles are smooth compared to the unfiltered
stress index ψ, indicating a parsimonious selection of frequencies, and b) crisis periods
tend to follow peaks in the CFC with a few years lag. In most cases peaks in the cycle
preceding crisis periods are also among the highest for a given country, implying that
periods of rapid growth in credit, house prices, stocks, and (inversely) bond yields tend to
build up macro-financial imbalances which can result in costly banking/financial crises.

However, it is important to note that not every cycle peak is followed by a crisis. There
are many possible reasons for this. First, some local peaks are fairly flat which indicates
that the build-up in macro-financial sector has been fairly short-lived. Second, banking
crises can be defined in many ways, and hence different sources locate crises in different
points in time. The Laeven and Valencia (2012) database alerts for crisis only when two
rather strict conditions are met, resulting in fewer crises periods than in alternative crisis
databases such as Babecký et al. (2012) and Detken et al. (2014). Third, it is possible

1We use this particular dataset to indicate banking crises periods as it is the most common one used in
related literature. See Appendix A.8 for more details about the crisis dataset.
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Visualization of Composite Financial Cycles

Figure 4.1: Composite Financial Cycles for sample countries. The CFCs are derived using
all available data. Blue lines represent the CFC and orange lines unfiltered stress index
ψ. The y-axis is by construction restricted to range (0, 1]. Shaded areas represent crisis
periods identified by Laeven and Valencia (2012).
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that crises are prevented by proactive regulatory measures. Lastly, and perhaps most
realistically, not all build-ups escalate into crises by sheer randomness.

In order to compactly summarize the information from individual cycles, we calculate
the deviations of the CFCs from their own historical mean and plot this range over time.
The resulting graph is shown in Figure 4.2, accompanied by the deviation series for
Germany, Spain, Italy, and the euro area aggregate. We see that there was a consistent and
even-timed build-up in the macro-financial sector across countries before the "dot-com"
bubble. Before the financial crisis of 2007-2008 the maximum deviation was even higher,
although not in all countries (especially in Germany) was the cycle above its historical
mean value. This would reinforce the popular story that although there were imbalances
brewing in some European countries, the ultimate shock that led to the financial crisis was
exogenous, ignited by the housing market collapse in the United States. During the onset
of the euro area debt crisis cycles in all sample countries were below their historical mean
but have rebounded since. The recovery has not been totally uniform, however, as in Q2
of 2016 some countries - namely Italy and Spain - were still below the historical mean.
Euro area aggregate was just about to reach its mean level.

As explained in detail in Chapter 3, a band-pass filter is used on stress index ψ to
obtain the CFC. Thus, the periodicity band (or equivalently frequency band) used in
filtering process plays an important role in the formation of the CFC. The longer the
periods allowed to pass through the filter, the smoother the CFC becomes, and vice versa.
In Table 4.1 we present the periodicity bands identified for our sample countries. Figure
A.1 in Appendix plots the Power Cohesion graphs through which the periodicity bands
are identified.

Several important characteristics become evident from these results. First, peaks in
PowerCohesions are located at period lengths above 8 years for all countries exceptAustria,
where the peak is right about at 8 year mark. We hence conclude that financial cycles
are rather long, with most important cyclicality taking place at periods above 8 years.
Secondly, we identify very large values for the upper bounds of the periodicity bands
(or equivalently, very small values for the lower ends of the frequency bands) uniformly
across countries. As these periods are much greater than the length of the sample in our
disposal, we can expect them to be poorly estimated and should thus be handled with some
degree of doubt. However, it turns out that the long end of the periodicity band is of little
practical importance. Schüler et al. (2015, p. 11) explain that the results for the case
where the maximum period length is forced to 50 years (the approximate length of the
so-called Kondratiev waves) are almost equivalent to the unrestricted case. This makes
intuitive sense as cycles much longer than the available sample data are far too smooth to
be of any relevance for empirical analysis. What matters most for the shape of the CFC is
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Figure 4.2: Range of deviations of CFCs from their historical mean values, plotted with
deviation of euro area aggregate CFC from its historical mean. Total time range is 1970Q1-
2016Q2. High values indicate large deviations from the mean value and thus possible
building imbalances.

the lower end of the periodicity band. This relates to the third observation, namely that the
are clear heterogeneities in the lower periods across countries. For Germany and Spain
(as well as the euro area aggregate) the lower ends of the periodicity bands are fairly high
compared to other countries, which explains the higher degree of smoothness of the CFC
for these countries. This would suggest that in Germany and Spain financial cycles tend
to be longer lasting than in other sample countries.
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Country Periodicity band

AUT 2.5 - 159.8

BEL 2.8 - 162.3

DEU 6.9 -∞
DNK 3.5 -∞
ESP 6.5 - 162.8

FIN 4.2 -∞
FRA 3.5 -∞
IRL 3.6 - 190.3

ITA 4.3 -∞
NLD 6.4 -∞
PRT 4.5 -∞
SWE 4.5 -∞
GBR 4.2 - 192.8

Mean 4.4 -∞
Median 4.2 -∞
EA 6.9 - 158.8

Table 4.1: Ranges of identified periodicity bands measured in years. EA is excluded from
mean and median. Corresponding frequency band end points are obtained via formula
ω = 2π 1

T , where T is the period length in quarters.

4.2 Early warning properties

In this section we investigate results from two early-warning exercises. First, we perform
a pooled logit early warning regression typical in the related literature. Second, we
investigate the CFC for Finland in more detail by comparing it to a market-based stress
index.

4.2.1 Pooled logit early warning regression

Beside the visual inspection of the series, we would like to quantify the extent to which
the CFCs are helpful in detecting costly banking/financial crises. We do this by following
typical early warning literature, which includes works such as Frankel and Rose (1996),
Demirgüç-Kunt and Detragiache (2000), Schularick and Taylor (2012), Alessi and Detken
(2011), as well as Lo Duca and Peltonen (2013). In essence, we perform a pooled logit
regression where we explain known financial crisis periods with our financial cycle proxy.

47



Early warning properties

Using the estimates obtained from this regression we can construct model-implied crisis
probabilities over time. We then compare these crisis probabilities to actual crisis periods
and derive evaluation metrics such as area under receiver operating characteristic curve
(AUROC) and usefulness for policymaker (or usefulness for short), which indicate whether
the CFC is a good measure for early warning purposes. As the end-point problems arising
from the filtering process might be of real importance, we consider two versions of the
CFC: a) CFC derived on full sample, i.e. estimated using all available data, and b) CFC
where filtering is conducted on expanding fashion.2

In formal terms, the early warning regression in performed as follows. First we identify
crisis dummy series for each of the countries within the intervals given in Table 3.2. We
will denote these series as {y}t . For example, if a country k faced a crisis in certain period
t, then yk,t = 1, and if there was no crisis, yk,t = 0. As the aim is to detect costly banking
crises in advance, instead of explaining the actual crises periods we want to explain some
time period preceding the crises. We call this time period vulnerability horizon. Thus, we
create transformed crisis dummy series { ŷ}t where values 1 indicate that there will be a
crisis in a given vulnerability horizon, and values 0 that there is no crisis in a given horizon.
As we want to be able to detect crises well in advance, we set our baseline vulnerability
horizon to be 2.5-4 years, or 10-16 quarters. We also test for another vulnerability horizon
of 1-3 years, or 4-12 quarters. As an example with quarterly observations and the baseline
vulnerability horizon, if we know that yk,t = 1 and otherwise zero, then we also have that
ŷk,t−16, ŷk,t−15, . . . , ŷk,t−10 will have value 1 and otherwise value zero.

Next we run a pooled logit regressions using all available data from time period
1970Q1-2016Q2.3 We use the obtained CFCs as the explanatory variable, including
intercept.4 The explained variable is ŷ. In order to treat possible biases arising during
crisis periods (see e.g. Behn et al., 2013 and Bussière and Fratzscherm, 2006), we remove
those periods from the sample that actually witnessed a crisis (i.e. periods where yt = 1) as
well as periods 6 quarters after the witnessed crisis (i.e. periods t+1, . . . t+6 after t where
yt = 1). Furthermore, we also drop observations that are left between the vulnerability

2CFC derived on expanding fashion is how Schüler et al. (2015) present their early warning regression
results. "Expanding" here means that the band-pass filtering is conducted adding one new observation at the
time. It does not mean that the ECDF transformation or estimation of spectral densities would be conducted
on expanding fashion, something which is not clearly stated in the original reference.

3Using country fixed-effects is not possible due to lack of observations. For discussion on the appro-
priateness of a pooled approach, see e.g. Demirgüç-Kunt and Detragiache (2000). Further, we exclude the
euro area aggregate from early warning regressions as it is not included in the crisis dataset.

4As is evident from Table 3.2, for some countries the time period for which the CFC is available is
shorter than that of 1970Q1-2016Q2. This means that for some countries we have less observations in the
pooled sample. One possibility would be to truncate sample lengths so that each country would have the
same sample length, but we avoid doing so as it would decrease our sample size too much.
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horizon and start of the crisis as these values would also introduce an unwanted bias.
Pooled logistics regression with intercept and one explanatory variable reads

p ≡ P(ŷ = 1) = eβ0+Xβ1

1 + eβ0+Xβ1
,

where X contains pooled CFC values. After obtaining estimates β̂0 for the intercept and
β̂1 for the CFC, we can use them to construct model implied crisis probability series over
time for each country k as

p̂k,t =
e β̂0+CFCk,t β̂1

1 + e β̂0+CFCk,t β̂1
,

where CFCk,t indicates the value of the financial cycle proxy for country k at time t.
We obtain binary crisis predictions by comparing the implied crisis probability to some
threshold level τ:

Pk,t(τ) =


1 if pk,t > τ

0 if pk,t ≤ τ

That is, if the implied crisis probability for a given period t exceeds τ, then Pk,t = 1 and
an alert for crisis will be raised.

From the binary predictions we can calculate usual early warning signalling statistics.
Specifically, we can derive the so-called confusion matrix observations true positive (TP),
true negative (TN), false positive (FP), and false negative (FN) as laid out in table 4.2:

Pt,k(τ) = 1 Pt,k(τ) = 0

ŷt,k = 1 TP(τ): Correct alarm FN(τ): Missed crisis
ŷt,k = 0 FP(τ): False alarm T N(τ): Correctly no alarm

Table 4.2: Confusion matrix.

Further, confusion matrix values allow us to calculate true positive rate and false positive
rate, defined as

TPR(τ) = TP(τ)
TP(τ) + FN(τ)

FPR(τ) = FP(τ)
FP(τ) + T N(τ)
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Now imagine we were to plot TPR(τ) and FPR(τ) for different values τ in a FPR-TPR
plane. The resulting curve goes by the name receiver operating characteristic (ROC), and
the area under the ROC is referred to as AUROC. AUROC exhibits how well our model
explains banking crises over all values τ. The bigger the AUROC, the higher the ratio TPR

FPR

on average.
Sometimes AUROC alone might not be the best metric in evaluating early warning

properties. For example, theremight be just a few values of τ that produce a high TPR
FPR ratio,

in which case AUROC will not generally be high. To overcome this possible challenge we
introduce the (absolute) usefulness metric championed by Alessi and Detken (2011). To
this end, we first define the loss function L(τ) as

L(τ) ≡ θ FN(τ)
TP(τ) + FN(τ) + (1 − θ)

FP(τ)
FP(τ) + T N(τ) ,

where "θ is the parameter revealing the policy maker’s relative risk aversion between type
I and type II errors" (Alessi and Detken, 2011, p. 523). When θ equals 0.5 the policy
maker treats both type I and II errors as equally bad outcomes. If the policy maker is
willing to accept more false positives in return of less type II errors (false negatives) and
hence more true positives, she will set 0 < θ < 0.5 , and vice versa. In turn, (absolute)
usefulness is defined as

Ua = min{θ, 1 − θ} − L

As suggested by Sarlin (2013), we can present the idea of usefulness in a slightly different
way. Namely, we can introduce a ratio called relative usefulness which states how well we
fair against a perfect model where loss equals zero. Relative usefulness is thus defined by5

Ur =
Ua

min(θ , 1 − θ)
Table 4.3 summarizes results from the early warning regressions. We see that, in the

vulnerability horizon of 10-16 quarters, our financial cycle proxy, derived both on full and
expanding samples (denoted as "CFCa full" and "CFCa exp.", respectively), performs
well in detecting banking crises. AUROCs for the full and expanding sample CFCs are

5Sarlin (2013) extended the loss function of Alessi and Detken (2011) to explicitly take into account
unconditional sample crisis probabilities in order to correct for biases arising from the fact that tranquil
times are much more common than crises periods. However, Alessi and Detken (2014) defend their less
complicated loss function by arguing that introducing relative sample sizes is "not robust to minor changes
in preferences or in the probability of crises". As we wish to keep our analysis as parsimonious as possible,
we opt not not introduce unconditional sample probabilities into the loss function.
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0.69 and 0.68, respectively, indicating a clear improvement over a coin-toss situation of
AUROC = 0.5. Furthermore, relative usefulness values are 0.30 and 0.26, respectively,
meaning that we achieve around 30% success compared to a perfect model. However, for
the vulnerability horizon closer to the onset of crises (4-12 quarters) we don’t find any
particular early warning success. This clearly stands in contradiction with findings by
Schüler et al. (2015) and will be discussed in more detail in section 4.3.

Extending the analysis beyond to that reported in Schüler et al. (2015), we highlight
the role of bond yields in our early warning setting. Columns (i) and (vii) show the results
from early warning regressions where we, instead of the CFC, use series Ii , i = 1 . . . 4

from (3.1) as explanatory variables. Comparing these two columns to columns (ii) and
(viii), respectively, excluding bond yields from the explanatory variables improves the
performance of the model in both vulnerability horizons. In particular, for vulnerability
horizon of 10-16 quarters the improvement is considerable. Thus, we have reason to
believe that including bond yields in the CFC might erode its early warning performance.
Running the analysis excluding bond yields from the CFC – shown as CFCb in the
table – confirms this result: AUROC and usefulness exhibit clear improvements in both
vulnerability horizons. At vulnerability horizon of 10-16 quarters, we derive AUROC
values 0.76/0.75 and relative usefulness values 0.40/0.40 for full and expanding samples,
respectively. Our results suggest that, at least as far as the early warning properties are
concerned, bond yields should be excluded from the financial cycle proxy.

4.2.2 Comparison of CFC and Financial Stress Index for Finland

To further investigate the early warning properties of the CFC, we compare it to index-
based measure of financial stress derived from daily market quotes. We reduce the analysis
here to consider only Finland as we have the stress index data readily available through
Bank of Finland’s database link. Specifically, we employ the Financial Stress Index (FSI)
for Finland as introduced in Huotari (2015). The FSI collects daily financial market data
from several sectors and aggregates it into a composite indicator of financial stress.6 The
FSI is essentially a Finnish version of the CISS calculated for the euro area by Holló et al.
(2012).

Figure 4.3 presents the FSI plotted with both the CFC and the stress index ψ. Visual
inspection of the upper graph reveals that peaks in the CFC tend to advance spikes in
the FSI. Prior to periods where the FSI shoots up there is a local maximum in the CFC.
Further, when the stress actually hits the economy, i.e. the FSI is at its local maximum, the
CFC is already at the bottom of its cycle or approaching it. This relationship is reinforced

6The sectors are bond market, money market, foreign exchange market, equity market, and banking. See
Huotari (2015) for more information.
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by negative correlation (−0.2) between the stress index ψ and the FSI. In summary, we
can confirm for Finland that the CFC can detect also periods of increased financial stress
which do not necessarily lead to a full-blown crisis.

Figure 4.3: Financial Stress Index for Finland, calculated for interval 1988Q1-2016Q2
using "portfolio theoretic aggregation" method (Huotari, 2015), plotted with CFC and
stress index ψ for Finland. Note that y-axes are adjusted slightly for comparison purposes.
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4.3 Comparing results with Schüler et al. (2015)

To finish the chapter we briefly discuss how our results compare to conclusions originally
presented in Schüler et al. (2015). To begin with, contrasting our table 4.1 to that of table
2 in the reference paper (Schüler et al., 2015, p. 19), our lower ends of the periodicity
bands (i.e. higher ends of the frequency bands) are greater than in the reference paper. In
our work mean and median of lower ends of the periodicity bands are 4.4 and 4.2 years,
respectively, whereas in Schüler et al. (2015) they are 2.8 and 2.6 years, respectively.
Further, in our work also the longer ends of the periodicity bands are greater than those
in Schüler et al. (2015) (however, as discussed in section 4.1, this bears less importance).
In summary, in this work we filter out shorter periodicity components which makes our
cycles smoother than those of Schüler et al. (2015). The reason why we pick up longer
periodicities is hard to pinpoint, but the fact that some of the data series - and especially
their lengths - differ from those used in Schüler et al. (2015) can influence the identified
frequency bands. Furthermore, the estimation of spectral densities is a very delegate
process where only small parameter changes and/or coding differences may affect the
results.

The fact that our cycles are smoother brings about two implications, one supporting
the results in Schüler et al. (2015) and the other inflicting a contradiction. Despite slightly
smoother curves found in our work, we can confirm the finding of the reference paper
that lower ends of the periodicity bands for most countries (AUT, BEL, DNK, FIN, FRA,
ITA, PRT, SWE, and GBR) are well below the 8 years suggested by earlier literature
such as Drehmann et al. (2012). Further, as argued by the reference paper, we also find
important heterogeneities across countries in the lower ends of the periodicity bands. As a
contradictory consequence of smoother cycles, our CFCmeasure picks up warning signals
earlier than that of Schüler et al. (2015). In particular, we find our CFC to be virtually of no
use in vulnerability horizon of 4-12 quarters, whereas in the horizon of 10-16 quarters the
CFC exhibits good early warning properties.7 However, this property is actually desirable
as detecting crises more in advance offers policy makers extra time to prepare appropriate
actions.

As a further point of comparison, Schüler et al. (2015) argue that bond yields co-move
the least with other three variables included in the analysis, and are thus less relevant for
the financial cycle proxy. We can bolster this finding from another point of view, namely
on the basis of the early warning results, as we found that excluding bond yields from the
financial cycle measure improves the early warning properties of the CFC substantially.

7In Schüler et al. (2015) authors considered a vulnerability horizon of 12-20 quarters instead of 10-16
quarters. We opted for 10-16 quarters as it yielded the best overall results in our setting.
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Scrutinizing individual countries, there are a few occasions where the behaviour of the
unfiltered stress index ψ as well as the CFC differ clearly from that reported in Schüler
et al. (2015, p. 47-50). One particularly interesting case is Germany around the financial
crisis of 2007-2008. Our results indicate Germany didn’t experience much of a draw-down
in macro-financial development during the financial crisis, nor a consistent build-up prior
to the crisis. Schüler et al. (2015, p. 48), however, identify a local peak just before
the financial crisis in both the CFC and the unfiltered stress index. This means that the
dissimilarity to our result is not solely due to more smoothing that our frequency band
indicts, but also due to differences in the levels of the stress index ψ. The reason for
differing levels is again hard to pin-point, but a possible factor are differing house price
series between our work and that of Schüler et al. (2015).
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Chapter 5

Conclusion

In this thesis we provided a thorough construction of a financial cycle proxy for 13
European countries as well as for the euro area aggregate. We first motivated the need for
such analysis and introduced essential parts from the theory of spectral analysis. Then,
drawing inspiration from research conducted at the European Central Bank (Schüler et al.,
2015), we aggregated four keymacro-financial variables (credit, house prices, stock prices,
and bond yields) into Composite Financial Cycle, or CFC for short, which summarizes the
most important cyclical co-movement among the variables. Finally, we showcased how
the obtained CFC faired in explaining known periods of financial crises, and compared
these results with ones obtained by our main reference paper (Schüler et al., 2015).

Our findings are mostly in line with the reference paper. First, most important cyclical
co-movement of the financial cycle takes place at periods above 8 years as indicated by
the peaks of Power Cohesion function. Nevertheless, there exists relevant cyclicality also
outside the period range of 8-30 years identified by earlier literature, and there seems to
be important heterogeneities across countries at lower periods. Lastly, from the four key
variables bond yield is the least important in construction of the CFC as it diminishes the
resulting early warning properties. The greatest difference in our analysis compared to that
of Schüler et al. (2015) is that our results emphasize longer periods (or lower frequencies)
as the source of most important co-movements. This results in smoother cycles, which
in turn translates to our CFCs detecting crisis periods more in advance than the CFCs
presented in the main reference paper. This, however, is a desirable property as detecting
crises more in advance leaves policy makers extra time to react to looming crises.

All in all, we identify a financial cycle proxy that suits well the desired properties.
In particular, our CFC is rather smooth, implying a parsimonious selection of relevant
frequencies. Further, the peaks in the CFC are associated with time periods of financial
stress. We thus conclude that the CFC makes an useful addition to the macroprudential
toolkit of central banks and academics alike.
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Appendix A

A.1 Circular shift

Let {X}n be a signal where n = 0, . . . , N − 1. That is, the N values of signal {X}n can be
represented as vector

X = [X0, . . . XN−1]

Let notation 〈k〉N denote the remainder of division k
N for non-negative integers k, i.e.

〈k〉N ≡ rem
( k
N

)
, k = 0, 1, . . .

For example, 〈5〉2 = 1. For negative integers k the operation is defined in a slightly more
complicated way:

〈k〉N ≡ rem
( ��N ∗ d| kN |e + k

��
N

)
, k = −1,−2, . . .

For example, 〈−2〉5 = rem(5∗1−25 ) = 3 and 〈−6〉5 = rem(5∗2−65 ) = 4. Evidently, 〈k〉N is a
periodic function of k with period N (Selesnick, 2017, p. 5), that is

〈k + hN〉N = 〈k〉N , h = 0, ±1, ±2, . . .

Let X [−m] denote a vector of circular shifted of values of X by m steps to the right, where
nth observations is given by

X [−m]
n ≡ X〈n−m〉N

As an example, shifting X one step to the right yields
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X [−1]0 = X〈0−1〉N = X〈N−1〉N = XN−1

X [−1]1 = X〈1−1〉N = X0

X [−1]2 = X〈2−1〉N = X1

...

X [−1]N−2 = X〈(N−2)−1〉N = XN−3

X [−1]N−1 = X〈(N−1)−1〉N = XN−2

which means

X [−1] = [XN−1, X1 . . . XN−2]

Correspondingly, setting m negative corresponds to circularly shifting our vector to left.
For example, for m = −2 we have

X [2]0 = X〈0+2〉N = X2

...

X [2]N−3 = X〈(N−3)+2〉N = XN−1

X [2]N−2 = X〈(N−2)+2〉N = X0

X [2]N−1 = X〈(N−1)+2〉N = X〈N+1〉N = X1

which means

X [2] = [X2, . . . , XN−1, X0, X1]

A.2 Raw series

Tables A.1 - A.4 below present information on the raw series introduced in Table 3.1.

A.3 Defalting nominal raw series

All series used in our analysis are measured in real terms. Series that are not originally
reported in real terms (credit and stock prices) are deflated with corresponding consumer
price index series as follows. Let t0 denote the base time period. Then for series {x}t , the
deflated value x̂t at any period t > t0 is given by

x̂t = xt ∗
( CPIt
CPIt0

)−1
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A.4 De-trending series

Credit, house prices, and stock prices are originally reported in either nominal or index
values, and are transformed to log QoQ changes, i.e. percentage changes. Bond yields
are originally reported as percentage points and are transformed to QoQ percentage point
changes. Formally, let {xi}t , i = 1, 2, 3, denote raw series credit, house prices, and stocks,
respectively. We obtain the de-trended values {∆xi}t , i = 1, 2, 3, for every t as

∆xi,t = ln
( xi,t

xi,t−1

)
≈ xi,t

xi,t−1
− 1 =

xi,t − xi,t−1
xi,t−1

= "QoQ percentage change"

Now let {x4}t denote the raw series for bond yield. De-trended values for every t are given
by

∆x4,t = x4,t − x4,t−1 = "QoQ percentage point change"
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Random Walk filter

A.5 RandomWalk filter

Here we shortly introduce a proxy for optimal band-pass filter called the Random Walk
filter. Consider we have an arbitrary discrete time series Xt . A filtered version of Xt , Yt , is
obtained via expression

Yt = B(L)Xt

where B(L) is some lag-polynominal. The issue is to find values of B(L) that yield an
optimal approximation to the band-pass filter, that is, a filter that extracts those components
of Xt with period of oscillations between number of observations pl and pu.1

The optimal band-pass filter B̂(L)would have the form (Cristiano and Fitzgerald, 2003,
p. 440)

B̂(L) =
∞∑

j=−∞
B j L j

such that

B̂ j =
sin( jb) − sin( ja)

π j
, j ≥ 1 (A.1)

B̂0 =
b − a
π

(A.2)

a =
2π

pu
, b =

2π

pl

Since in practice we don’t have infinite amount of data the optimal band-pass filter can
clearly never be obtained. Let us denote the hypothetical output from ideal filter as Ŷt .
Now it is our objective to use the actual filter in our disposal, B(L), to obtain data Yt , and
we wish to do it in a manner that we minimize the mean-square error criterion

E[(Yt − Ŷt)2 |x], x ≡ [X1, . . . XT ]

for every time period t. The Random Walk Filter approximation of Ŷ is defined as
(Cristiano and Fitzgerald, 2003, p. 437)

Yt = B0Xt + B1Xt+1 + · · · + BT−1−t XT−1 + B̃T−t XT

+ B1Xt−1 + · · · + Bt−2X2 + B̃t−1X1

1We have 2 ≤ pl < pu < ∞.
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Matlab code for Blacmman-Tukey spectral density estimator

where B j are given as in (A.1) - (A.2). For B̃T−t we have

B̃T−t = −
1

2
B0 −

T−t−1∑
j=1

B j t = 3, . . . ,T − 2

and B̃t−1 solves

0 = B0 + B1 + · · · + BT−1−t + B̃T−t + B1 + . . . Bt−2 + B̃t−1

Using the Random Walk filter code provided by original authors is rather simple:
We feed our unfiltered stress index ψ to algorithm BRW (pl, pu) with inputs pl and pu

corresponding to values indicating periodicity band endpoints in given time unit. The
code for the algorithm is available at the homepage of Federal Reserve Atlanta under
address https://www.frbatlanta.org/cqer/research/bpf.aspx.

A.6 Matlab code for Blacmman-Tukey spectral density
estimator

function [crossSpectrum,frequencies] =...

crossSpectrumEstimateBT(...

series1,....

series2,...

L,...

type,...

nfft...

)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% crossSpectrumEstimateBT.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Spectral density estimation as explained in Voutilainen(2017).

% This function takes in two real-valued series and produces an estimate

% for their cross-spectrum. The method used is the so-called Blackman-Tukey

% method which estimates the spectral density through cross-covariances.

%

% COMMUNICATES WITH:
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Matlab code for Blacmman-Tukey spectral density estimator

% - Econometrics toolbox

%

% INPUTS :

% - series1: vector of values representing input series 1

% - series2: vector of values representing input series 2

% - L: integer representing lag-window length

% - type: string representing whether we want cross-spectrum estimate

% (smoothed periodogram) or the "raw" periodogram

% - length of FFT (optional)

%

% OUTPUT:

% - crossSpectrum: vector of values corresponding to 1-sided

% cross-spectral estimate

% - frequency interval corresponding to crossSpectrum

%

% REDERENCES:

% - Priestley(1981): Spectral Analysis and Time Series Vol. 1 and 2

% - Voutilainen(2017): Frequency-domain View on Financial Cycles:

% Empirical Evidence from Europe, MSc thesis

% Goethe Universität Frankfurt

% - http://blogs.uoregon.edu/seis/wiki/unpacking-the-matlab-fft/

% - http://dsp.stackexchange.com/questions/34642/practical-cross-

% spectrum-estimation-using-blackman-tukey-approach

% OPTIONS

% - type = ’spectrum’: Cross-spectrum estimate

% - type = ’periodogram’: Periodogram estimate

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Copyright:

% Ville Voutilainen

% Bank of Finland

% Edited: September 2016

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Input Checks

if length(series1) ~= length(series2)
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Matlab code for Blacmman-Tukey spectral density estimator

errordlg( [’Error in crossSpectrumEstimateBT; Lengths of input ’....

’series do not match!’],’Well this is awkward... ’);

error([’Error in crossSpectrumEstimateWelch; Lengths of input’ ...

’series do not match!’])

end

if strcmp(type,’spectrum’) == 1 || strcmp(type,’periodogram’) == 1

% all ok

else

errordlg( [’Error in crossSpectrumEstimateBT; Invalid ’....

’"type input string"!’],’Well this is awkward... ’);

error([’Error in crossSpectrumEstimateWelch; Invalid’ ...

’"type input string"!’])

end

Parameter values

% Length of total sample

N = length(series1); % Only for series 1 since both have equal length

% If user has not defined length of FFT, set it as in eq. 9.5.7 of

% Priestley(1981).

% Make sure that nfft is ODD, if not then pad the series with

% a zero.

if nargin < 5 % no nfft set

nfft = 2*(N-1) + 1;

if rem(nfft,2) == 0

nfft = nfft + 1;

end

else % nfft set

if rem(nfft,2) == 0

nfft = nfft + 1;

end

end

% Total length of the lag-window, must be ODD

L = 2.*round((L+1)/2)-1;
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Matlab code for Blacmman-Tukey spectral density estimator

% Truncation parameter for the lag-window

M = (L-1)/2;

% Sampling frequency

fs = 1;

Cross-covariances

% Cross-correlation using crosscov, N-1 lags

crossCorrelation = crosscorr(series1,series2,N-1);

% Convert into cross-covariance

crossCovariance = crossCorrelation * std(series1) * std(series2);

Apply lag window if necessary

if strcmp(type,’spectrum’) == 1

% Define lag-window

win = parzenLagWindow(L);

% Window cross-covariances

xw = zeros( 2*(N-1) + 1 ,1);

counter1 = 0;

counter2 = 0;

for s = -(N-1) : N-1

counter1 = counter1 + 1;

if abs(s) <= M

counter2 = counter2 + 1;

xw(counter1,1) = win(counter2,1) * crossCovariance(counter1,1);

end

end

else

xw = crossCovariance;

end

Get frequency interval

% 1-sided frequnecy intervals (nfft odd, positive Nyquist frequency drops)
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Matlab code for Blacmman-Tukey spectral density estimator

Nyq = fs/2;

df = fs/nfft;

freq2Sided = (0:(nfft-1))*df;

freq2Sided(freq2Sided>Nyq) = freq2Sided(freq2Sided>Nyq)-(Nyq*2);

freq2Sided = freq2Sided’;

freq1Sided = freq2Sided(1:(nfft-1)/2 + 1);

angularFreq1Sided = 2*pi*freq1Sided;

Estimation of the cross-spectrum from cross-covariances

% In order to calculate this expression in practical terms, we need to

% circularly shift the input vector for fft. Also, in order to obtain

% smoother estimation, we want to use user-provided nfft value in the fft.

% Thus, depending on the value nfft, we might need to to zero-pad vector xw.

% We cannot let fft function do this since it will break the symmetry.

% Therefore, this is done manually.

% Since nfft and length(xw) are both odd, twoTimesZeros must be even

twoTimesZeros = nfft - length(xw);

% Shift the vector xw circularly to match DFT input and pad the zeros in

% between in order to preserve symmetry in fft

xw = [ xw((N-1)+1 : end,1);...

zeros(twoTimesZeros/2,1);...

zeros(twoTimesZeros/2,1);...

xw(1:N-1,1) ];

% DFT of circularly shifted and zero padded windowed cross-correlations,

% see equation 3.8 of Voutilainen(2017). DFT calculated as in equation

% 2.15 of Voutilainen(2017).

P2Sided = 1/length(xw) * fft(xw) ;

% Since input series are inherently real-valued, it is enough to obtain

% only one-sided cross-spectrum. Since nfft is ODD, we have NEITHER of the

% Nyquist frequency values in the middle of the vector, only values that

% are df/2 smaller than Nyquist frequency value. Also, there is no zero

% frequency value for negative frequencies
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Matlab code for Blacmman-Tukey spectral density estimator

P1Sided = P2Sided(1:(nfft-1)/2 + 1 );

% If we deal with autospectrum, the sine terms appearing in eq 6.2.54

% should cancel and we are reduced to equation 6.2.51. However, the FFT

% above still gives tiny imaginary terms for autospectrum as well due to

% numerical inaccuracies. Here we force these value real.

if series1 == series2

P1Sided = real(P1Sided);

end

% Since both positive and negative halfs of the frequency

% range display half of the energy of the signal, multiply all

% observations in the one-sided estimate by two, EXPECT values at zero

% frequency (no Nyquist frequency value present, thus only frequency zero

% value is not multiplied!)

P1Sided(2:end) = 2* P1Sided(2:end);

Output

crossSpectrum = P1Sided;

frequencies = angularFreq1Sided;

end
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A.7 Power Cohesions

Figure A.1: Power Cohesions for individual countries. x-axis depicts angular frequency
interval [0, π], and y-axis depicts PCoh value normalized to unit interval. Angular fre-
quencies are converted to corresponding time periods via formula ω = 2π 1

T , where T is
the period length in quarters. Shaded regions represent period interval 8-30 years. Purple
vertical lines correspond to identified frequency band endpoints.
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A.8 Crisis Database

Table A.5 describes the crisis periods compiled by Laeven and Valencia (2012) for each of
the countries used in this thesis, except for the euro area aggregate as the currency union
as a whole is not included in the dataset. The aim of the dataset is to capture banking
crises of systemic nature. In order for a period to be considered as one with banking crisis,
two conditions have to be met. First, country must exhibit significant signs of financial
distress, indicated e.g. by bank runs, bank liquidations etc. Second, financial distress
resulted in notable banking policy interventions. In the original paper starting/ending
periods of crises are sometimes given at monthly, sometimes at yearly accuracy. In the
case starting/ending period is only given at yearly accuracy we set the start/end to Q1/Q4
of corresponding year.

Country Period(s)

AUT 2008Q3-2010Q4

BEL 2008Q3-2010Q4

DEU 2008Q3-2010Q4

DNK 2008Q3-2010Q4

ESP 1977Q1-1981Q4, 2008Q3-2010Q4

FIN 1991Q3-1995Q4

FRA 2008Q3-2010Q4

IRL 2008Q3-2010Q4

ITA 2008Q3-2010Q4

NLD 2008Q3-2010Q4

PRT 2008Q3-2010Q4

SWE 1991Q3-1995Q4, 2008Q3-2010Q4

GBR 2007Q3-2010Q4

Table A.5: Crisis periods for the sample countries in Laeven and Valencia (2012) banking
crisis data set.
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